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AUTOMATIC CALIBRATION OF HYDROLOGIC MODELS WITH MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHM AND PARETO OPTIMIZATION

Remegio B. Confesor Jr. and Gerald W. Whittaker®

ABSTRACT: In optimization problems with at least two conflicting objectives, a set of solutions rather than a
unique one exists because of the trade-offs between these objectives. A Pareto optimal solution set is achieved
when a solution cannot be improved upon without degrading at least one of its objective criteria. This study
investigated the application of multi-objective evolutionary algorithm (MOEA) and Pareto ordering optimization
in the automatic calibration of the Soil and Water Assessment Tool (SWAT), a process-based, semi-distributed,
and continuous hydrologic model. The nondominated sorting genetic algorithm II (NSGA-II), a fast and recent
MOEA, and SWAT were called in FORTRAN from a parallel genetic algorithm library (PGAPACK) to determine
the Pareto optimal set. A total of 139 parameter values were simultaneously and explicitly optimized in the cal-
ibration. The calibrated SWAT model simulated well the daily streamflow of the Calapooia watershed for a 3-
year period. The daily Nash-Sutcliffe coefficients were 0.86 at calibration and 0.81 at validation. Automatic
multi-objective calibration of a complex watershed model was successfully implemented using Pareto ordering
and MOEA. Future studies include simultaneous automatic calibration of water quality and quantity parame-
ters and the application of Pareto optimization in decision and policy-making problems related to conflicting
objectives of economics and environmental quality.
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INTRODUCTION measurement error, hence the need for model calibra-
tion (Gupta et al., 1998; Eckhardt and Arnold, 2001).

Calibration is the estimation of model parameters to

Most hydrologic models are characterized by com-
plex functional relationships and a large number
of parameters that are usually conceptual representa-
tions of the watershed. In most cases, these parame-
ters cannot be directly measured or are not
exactly known because of spatial variability and

achieve a system that closely resembles the actual
system that the model represents (Yapo et al., 1998).
Manual trial and error calibration is time consuming
and depends on the modeler’s experience, skill, and
knowledge of the model’s processes and dynamics.
While overcoming the shortcomings of manual trial
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and error calibration, automatic calibration of com-
plex hydrologic models requires a tremendous
amount of computation.

Multiple objective optimizations improve model
calibration but further increase the computational
requirements. Classical multi-objective optimization
involves transforming multiple objectives into a sin-
gle function. The most common method is the
weighted sum principle where the objectives are
multiplied with user-defined weights and added
together to form a single function. To avoid the dis-
advantages of converting multi-objective functions
into a single optimization problem, Pareto optimiza-
tion has gained use and popularity in hydrologic
modeling. In problems with at least two conflicting
objectives, a set of optimal solutions exists as a
result of the trade-offs between these objectives. A
Pareto optimal solution set is achieved when a solu-
tion cannot be improved upon without degrading at
least one of its objective criteria. The cardinality of
the Pareto optimal set is one if the objective func-
tions are not conflicting to each other (Deb, 2001).
This means that the optimum solution correspond-
ing to any objective is the same and the Pareto
front in the search space will converge into a single
solution. Otherwise, a front of different solutions is
searched for conflicting objectives. This optimal
front can be established after several iterations and
function evaluations that require tremendous
amount of computation. Population evolution-based
search algorithms such as genetic algorithms (GAs)
(Holland, 1975; Goldberg, 1989) and the shuffled
complex evolution (SCE) algorithm (Duan et al.,
1992) have been used in implementing Pareto rank-
ing.

Yapo et al. (1998) and Vrugt et al. (2003), while
calibrating the conceptual rainfall-runoff model Sac-
ramento Soil Moisture Accounting (SAC-SMA), incor-
porated dominance or Pareto ranking into the SCE so
that the population evolved toward the Pareto opti-
mal set in the search space. Eckhardt and Arnold
(2001) also used the SCE and took 6 days to calibrate
a distributed catchment hydrologic model that expli-
citly optimized 18 parameters and simultaneously
adjusted 143 parameters in fixed ratios. Khu and
Madsen (2005) used a modern and fast nondominated
sorting GA in a multiple objective automatic calibra-
tion of another conceptual rainfall-runoff model
(MIKE11/NAM). However, all of the above calibra-
tions were burden by the computational requirement
imposed by the GA or SCE in exploring the entire
feasible search space for the Pareto optimal set. In
calibrating a process-based and semi-distributed
hydrologic model, van Griensven and Bauwens (2003)
normalized and put weights in their objective func-
tions to create a global optimization criterion (GOC)
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with the SCE, hence overcoming the computational
burden.

This study used a Beowulf cluster consisting of a
server (P4 3.2 GHz dual processor) and 12 computa-
tion nodes (P4 2.4 GHz) at the National Forage Seed
Production Research Center (NFSPRC), a unit of the
U.S. Department of Agriculture - Agricultural
Research Service (USDA-ARS) in Corvallis, Oregon
(Whittaker, 2004). With the NFSPRC Beowulf clus-
ter providing the computational power required in
Pareto ranking and multi-objective evolutionary
algorithm (MOEA), the application of Pareto order-
ing optimization in the multiple-objective automatic
calibration of a complex process-based, semi-distri-
buted, and continuous hydrologic model such as the
Soil and Water Assessment Tool (SWAT) was inves-
tigated. This study also demonstrated the generation
and advantage of Pareto solutions in optimizing
selected SWAT parameters with two objective func-
tions.

METHODS

NSGA-IT and PGAPACK

Deb et al. (2002) proposed the nondominated sort-
ing genetic algorithm II (NSGA-II), a fast and effi-
cient MOEA characterized by a nondominated sorting
algorithm, an elitist selection method, and the elimin-
ation of a sharing parameter. NSGA-II assigns fitness
by Pareto ranking (or nondomination) and crowding
distance to the combined parent and child popula-
tions. The solution is then ranked according to the
number of solutions that dominates it. A solution X;
dominates another solution X, if both conditions are
satisfied (Deb, 2001) (1) the solution X; is no worse
than X, in all objectives; and (2) the solution X; is
strictly better than X5 in at least one objective.

Crowding distance is the average distance between
an individual and its nearest neighbors in the search
space (see Deb et al., 2002). In minimization prob-
lems, solutions that are dominated by fewer solutions
(i.e., has a lower rank) are given a better fitness than
the dominated ones. In cases where the solutions
have the same nondomination rank, the solution with
larger crowding distance is preferred, thus ensuring
diverse and well-spread population. The new parent
population is chosen from the combined parent and
child population based on the solutions’ fitness or
rank, thus the elitist selection. NSGA-II had been
tested and yielded solutions that converged to the
true Pareto front of problems with convex, noncon-
vex, nonconvex disconnected, convex disconnected,
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and nonconvex nonuniformly distributed solutions
(Deb et al., 2002). The NSGA-II code is available from
the Kanpur Genetic Algorithms Laboratory at http://
www.iitk.ac.in/kangal/codes.shtml.

PGAPACK is a general purpose, data-structure-
neutral, parallel GA library developed at the Argonne
National Laboratory (Levine, 1996). Its key features
include: (1) parallel portability across uni-processors,
multiprocessors, multi-computers, and workstation
networks; (2) callable in C and FORTRAN languages;
(8) binary-, integer-, real-, and character-valued
native data types; (4) simple interface for novice and
expert application users; (5) large set of example
problems; and (6) parameterized population replace-
ment. The structure and usage of PGAPACK is dis-
cussed in detail in Levine (1996).

The SWAT Model

The Soil and Water Assessment Tool (SWAT)
(Arnold et al., 1998) was developed by the (USDA-ARS)
“to predict the impact of land management practices
on water, sediment and agricultural chemical yields in
large complex watersheds with varying soils, land use
and management conditions over long periods of time”
(Neitsch et al., 2002, p. 1). SWAT is physically based,
uses readily available inputs, computationally
efficient, and is a continuous model that operates on a
daily time step (Neitsch et al., 2002). SWAT is not
designed to simulate single-event storms. In SWAT,

the entire watershed can be divided into several subba-
sins and each subbasin is further divided into unique
combinations of land use and soil properties called the
hydrologic response unit (HRU). However, the location
of each HRU is not specified in the subbasin. A graphi-
cal user Geographic Information System (GIS) inter-
face (AVSWAT2000) can be used to input and
designate land use, soil, weather, ground water, water
use, management, pond and stream water quality
data, and the simulation period (Di Luzio et al.,
2001). GIS input files include digital elevation model
(DEM), land use and soil properties layers, and
weather database.

The Calapooia River Watershed

The Calapooia river watershed (U.S. Geological
Survey, USGS, 10 digit HUC 1709000303) is a tri-
butary of the Willamette River basin west of the
Cascades mountain range in Oregon (Figure 1). It
has drainage area of 963 km? as delineated from a
USGS streamflow gaging station (44°37'15”N,
123°07'40”W) in Albany, Oregon. Its elevation ran-
ged from 56 to 1,576 m and its land use is mainly
agriculture (43%), forest (41.8%), and hay/pas-
ture/range areas (11.2%). The remaining areas were
composed of wetlands, urban areas, and water
bodies. The watershed has a predominantly winter
rainfall climate with precipitation from December
through February comprising about 50% of the

15 kilometers

@ Stream Gage/Weather Station
v/ Streams
[ Watershed boundary

FIGURE 1. The Calapooia River Watershed in Oregon, USA.
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annual total with lesser amounts in the spring and
fall and negligible precipitation during summer.
The precipitation, minimum and maximum tem-
perature data were taken from the weather station
at Holley, Oregon (44°21’5”N, 122°47'10”W, eleva-
tion = 165 m).

The watershed was delineated with a threshold
size of 150 ha wusing the Arcview interface to
SWAT2000 (Di Luzio et al., 2001). The 10-m DEM
used in delineating the watershed was taken from
the Regional Ecosystem Office (http:/www.reo.gov/
reo/data/DEM_Files/indexes/orequadindex.asp). The
observed daily streamflow data used in calibrating
SWAT were obtained from the USGS National
Water Information System (NWIS) website (http://
nwis.waterdata.usgs.gov/or/nwis/sw). The state soil
geographic (STATSGO) database for Oregon was from
the U.S. Department of Agriculture — National
Resources Conservation Service, USDA-NCRS (http://
www.ncge.nrcs.usda.gov/products/datasets/statsgo).
Land use for the Willamette basin was acquired from
the USGS National Water-Quality Assessment
(NAWQA) Program (http://or.water.usgs.gov/projs_dir
/pn366/landuse.html). Climate data were taken
from the Oregon Climatic Service (http://www.ocs.
oregonstate.eduw/).

Automatic Calibration

The SWAT model was initially set up using the
Arcview interface (AVSWAT2000) to SWAT (Di
Luzio et al., 2001). HRU distribution was defined by
eliminating landuses that were <10% of the
watershed area and then by removing soil types that
were <10% within a land-use area. These thresholds

resulted in four dominant land uses (mixed forest,
evergreen forest, perennial grass, and hay, pasture,
and rangelands) and nine major soil groups in the
watershed. After overlaying the landuse and soil
properties layers, there were a total of 17 HRUs.
Based on the SWAT user’s manual (Neitsch et al.,
2002) and previous studies (Eckhardt and Arnold,
2001; Van Liew et al., 2005), 11 parameters (eight
for each HRU and three for the whole watershed)
were used in the calibration, resulting in 139 unique
parameter values to be explicitly optimized. The lim-
its of the parameters for calibration were fixed
(Table 1) to ensure realistic and acceptable values
representative of the watershed characteristics. The
calibration (October 1973 to September 1976) and
validation (October 1976 to September 1979) periods
were set for three water years due to the availabil-
ity of streamflow data.

PGAPACK was called in FORTRAN to randomly
generate the initial parent population of 100
solutions. A child population (size = 100) was then
generated through selection, mutation, and crossover
from the parent population with PGAPACK
(Figure 2). In the first iteration, the child and
parent populations were evaluated for two objective
functions (see next section). In the evaluation step,
SWAT was called as a subroutine and was executed
for each solution.

Objective Functions and Model Evaluation

The objective functions were to minimize the
average root mean square error (RMSE) of the
observed vs. simulated peak (driven) flows and to
minimize the average RMSE of the observed uvs.

TABLE 1. Range of Values of Parameters Selected for the Calibration of the SWAT Model.*

Variable Description Minimum Maximum
GWDELAY Ground-water delay time (days) 0.001 62.000
ALPHABF Base-flow alpha factor (days) 0.040 1.000
GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 0.000 100.000
GWREVAP Ground-water “revap” coefficient 0.020 0.750
REVAPMN Threshold depth of water in the shallow aquifer for “revap” or percolation to the deep aquifer 0.000 200.000
to occur (mm)
AWHCP Available water capacity of the upper-most soil layer (mm HyO/mm-soil) 0.110 0.300
ESCO Soil evaporation compensation factor 0.700 1.000
CN2P SCS runoff curve number 55.000 89.000
CHK2° Effective hydraulic conductivity in the main channel alluvium (mm/h) 0.000 150.000
CHK1¢ Effective hydraulic conductivity in tributary channel alluvium (mm/h) 0.000 150.000
SURLAG® Surface runoff lag coefficient 1.000 21.000

2Unless specified, the range of values is the same for all the 17 hydrologic response units (HRUs).
PFor brevity, only the range of values across all HRUs is shown. Each HRU has a different range depending on soil type or land use.

“Only one value of this variable is calculated for the whole watershed.
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simulated low (nondriven) flows. The RMSE was
defined as

" 0.5

RMSE = %Z (Qobs,i - Qsim,i)2 ’ (1)

i=1

where n is the number of time steps with peak or low
flow events, Q.bs; is the observed streamflow at time
i, and Qgim; is the simulated streamflow at time i.
The hydrographs were partitioned into driven and
nondriven components assuming that the behavior
of the watershed is different during the periods dri-
ven by rainfall and periods without rain (Boyle
et al., 2001). The periods immediately after rainfall
(nondriven quick) should be dominated by interflow
and the latter periods (nondriven slow) by base flow.
The driven flow can be associated with the rising
limb of the hydrograph and the nondriven flow with
the recession. A base-flow filter (Arnold et al., 1995;
Arnold and Allen, 1999) was used to estimate the
base-flow component of the observed streamflow.

Initialize Message Passing Interface
for Parallel Computing

!

[ initialize PGAPACK context variable (ct) |

| Read limits for calibration variables |

| PGAPACK initial SELECTION, CROSSOVER, and MUTATION |

:

Evaluate PARENT population with
Objective 1 (CALL SWAT)

Evaluate PARENT population with
Objective 2 (CALL SWAT)

Evaluate CHILD population with
Objective 1 (CALL SWAT)

Evaluate CHILD population with
Objective 2 (CALL SWAT)

I MERGE PARENT and CHILD POPULATIONS I

| CALL NSGA-II's nondominated sorting |

Select new PARENT
population

PGAPACK crossover and
mutation (results in new —
CHILD population)

END

FIGURE 2. Computational Scheme in PGAPACK
Linking NSGA-II and SWAT With Two Objective Functions.
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The streamflow was designated as driven when the
first pass base flow was <80% of the observed
streamflow; otherwise the streamflow was classified
as nondriven.

The Nash-Sutcliffe model efficiency (Nash and
Suttcliffe, 1970) was used to evaluate SWAT’s overall
performance at calibration and validation:

¥

21: (Qobs,i - Qsim,i)2
NSE = |1 - =] ; (2)
X

1
n

(Qobs,i - Qsim,i) ?

1
n

where Qs is average of the observed daily flows and
all the other variables are as previously defined. The
Nash-Sutcliffe efficiency ranges from negative infinity
to 1, with 1 indicating a perfect fit.

RESULTS AND DISCUSSION

The optimization run of 1,000 iterations took
10.75 h or an average of 38.7 s per iteration. A single
iteration took about 9 min in a P4 3.2 GHz desktop
computer. Except for the first iteration, there were
200 function evaluations (two objectives x 100 solu-
tions) and SWAT was executed in each evaluation.
Thus, during the entire calibration period there were
200,200 SWAT runs. PGAPACK’s evaluation function
returns a single scalar value instead of an array. Due
to this constraint and other limitations of the PGA-
PACK library and the parallelization method, a more
efficient algorithm that could run SWAT once for
each solution per iteration was difficult to implement.
This algorithm would have decreased the optimiza-
tion run by half the current time and is presently
explored and developed.

Figure 3 shows the evolution of the Pareto optimal
front in the objective space at different generations.
Previous optimization runs by the authors showed
that there was minimal change in the Pareto optimal
front and the objective function values at 1,000th
generation; thus, the maximum number of iterations
was set to 1,000. The daily Nash-Sutcliffe efficiency
values ranged from 0.85 to 0.86 for the final set of
solutions. These values were in the upper bounds of
the efficiency values (0.65 to 0.86) previously reported
for SWAT (Eckhardt and Arnold, 2001; van Griens-
ven and Bauwens, 2003; Eckhardt et al., 2005). All
the final solutions were in the first nondominated
(most optimal) rank or front (see Deb, 2001; Deb
et al., 2002).
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Objective 1 and Objective 2 may not strictly con-
flict with each other but the Pareto optimization
resulted in a set of optimal solutions that accounts
the trade-off between the objectives as shown in Fig-
ure 4. Solution 1 had the lowest RMSE of driven
flows but had also the highest RMSE of nondriven
flows. In contrast, Solution 2 had the lowest RMSE of
nondriven flows but had also the highest RMSE of
driven flows. Between these two extreme solutions,
there are other solutions with varying degree of
tradeoffs between Objective 1 and Objective 2. The
choice between the solutions therefore depends on
the interest of the user and the selection of the solu-
tion for calibration and validation is arbitrary as all

the solutions are Pareto-optimal.
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FIGURE 3. Evolution of the Pareto Front in the Objective Space.
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The statistical difference between the resulting
flows from these solutions was not investigated in
this study but focus was on the practical applications
of the Pareto front in decision and policy-making. For
example, one concerned with sediment concentration
would select solutions with lowest RMSE for driven
flows as high sediment concentrations are usually
associated with high flows. As shown in Figure 5,
Solution 1 simulated the streamflow better during an
extreme storm event. On the other hand, the solution
with lowest RMSE for nondriven flows (Solution 2) is
preferred if one is interested in analyzing the base
flow (Figure 4). Solution 2 has a better simulation of
streamflow during a low flow period without rainfall
(Figure 6).
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450 7; ® observed
;@ 400 solut!on1
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Simulation day (day 1 = October 1, 1973)
FIGURE 5. Simulated Streamflow of Selected Solutions
After 1,000 Generations: Extreme Storm Event.
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FIGURE 6. Simulated Streamflow of Selected Solutions
After 1,000 Generations: Low Flow Period.
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The curve number (CN2), soil evaporation compen-
sation factor (ESCO), and available soil water holding
capacity (AWHC) govern the surface water response
in SWAT (Eckhardt and Arnold, 2001; Van Liew
et al., 2005). These parameters favor the contribution
of direct runoff to the streamflow. Thus, optimizing
Objective 1 (RMSE of driven flows) could in turn opti-
mize these parameters. In the same manner, optimi-
zing Objective 2 (RMSE of nondriven flows) could
optimize the parameters that govern the subsurface
water response in SWAT. These parameters were the
ground-water “revap” coefficient (GWREVAP),
ground-water delay (GWDELAY), threshold depth of
water in the shallow aquifer for return flow
(GWQMN), threshold depth of water in the shallow
aquifer for “revap” or percolation to the deep aquifer
to occur (REVAPMN), and the base-flow alpha factor
(ALPHABF).

The other optimized parameters may not directly
influence surface runoff or ground water flow but
affect SWAT’s routing processes and further adjust
the shape of the hydrographs. The surface runoff lag
time (SURLAG) governs the release of the surface
runoff to the main channel. The effective hydraulic
conductivity in tributary channels (CHK1) controls
the surface runoff transmission losses from the sub-
basins to the main channel. The main channel effect-
ive hydraulic conductivity (CHK2) shows the
relationship of the stream with the ground water and
directs the water movement from streambed to the
subsurface (or vice-versa) depending on the stream
type.

All the 139 parameter values were explicitly opti-
mized in the calibration in contrast to previous stud-
ies (Eckhardt and Arnold, 2001; van Griensven and
Bauwens, 2003; Eckhardt et al., 2005) where the
number of parameters was reduced by either cre-
ating sharing parameters between HRUs or fixing
ratios between the parameters. However, sensitivity
analysis and the modeler’s understanding and know-
ledge of the watershed characteristics are still essen-
tial in identifying parameters that need to be
optimized.

The calibrated SWAT model simulated well the
daily streamflow of the Calapooia River watershed for
a 3-year period (October 1973 to September 1976).
The selected solution (Solution 3) for calibration
resulted in a daily Nash-Sutcliffe efficiency of 0.86,
which was a large improvement from 0.28 calculated
from the simulated daily streamflow using the default
model setup with AVSWAT2000. Figure 7 shows the
observed daily streamflow with the lower and upper
bounds of the simulated daily streamflow generated
from all solutions. As all solutions are optimal, the
lower and upper bounds of the simulated flows were
comparable with the observed values over the entire
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simulation period. A high model efficiency of 0.98 was
calculated for the 36 monthly means for the same cal-
ibration period (Figure 8). Streamflow validation in
the following three water years (October 1976 to Sep-
tember 1979) resulted in overall model efficiencies of
0.81 (daily) and 0.95 (monthly), which further verified
the calibration results (Figure 9).

Despite the high daily Nash-Sutcliffe efficiency
coefficients, the simulation outputs tend to underes-
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FIGURE 7. Calibration Results: Observed and
Simulated Daily Flows for the Calapooia Watershed.
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FIGURE 8. Calibration Results: Observed and Simulated Monthly
Flows for the Calapooia River Watershed Fitted in a 1:1 Line.

timate high peak flows. Previous studies (Eckhardt
and Arnold, 2001; Van Liew et al., 2005) reported
large differences between the observed and
simulated values at streamflow peaks, despite the
optimization of parameters that favor contribution
of direct runoff to streamflow. It might be possible
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FIGURE 9. Validation Results: Observed and Simulated
Daily Flows for the Calapooia Watershed.

that the soil properties were not attributed to the
correct hydrologic soil groups, and importance were
given to land covers and soils dominating the HRUs
(Eckhardt and Arnold, 2001). These uncertainties
might have been reduced with the use of the
county wide and much detailed soil survey geo-
graphic (SSURGO) database.

This underestimation could also be the effect of
using RMSE as objective functions in the optimiza-
tion. The RMSE is a function of the square of the dif-
ference between the observed and simulated
streamflow; which makes the optimization highly sen-
sitive to extreme peak flows. Boyle et al. (2000) repor-
ted that the use of RMSE as a criterion in automatic
calibration leads to strongly biased simulations of the
recessions. It was not surprising then that the Nash-
Sutcliffe efficiencies for the driven flows ranged from
0.83 to 0.84 and higher efficiencies for nondriven
flows from 0.92 to 0.93.

SUMMARY AND CONCLUSIONS

This study investigated the application of MOEA
and Pareto ordering optimization in the automatic
calibration of the Soil and Water Assessment Tool
(SWAT), a complex, process-based, semi-distributed,
and continuous hydrologic model. SWAT was auto-
matically calibrated for the Calapooia watershed in
Oregon, USA, by optimizing selected parameters with
two objective functions. The NSGA-II, a fast MOEA,
and SWAT was called in FORTRAN from a PGA-
PACK to determine the Pareto optimal set.

The automatic multi-objective calibration of a
complex process-based watershed model was suc-
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cessfully implemented using Pareto ordering optimi-
zation and MOEA. Pareto ordering optimization
gives the modeler a set of optimal solutions that
accounts the trade-offs between the objectives. The
selection of a solution depends on the modeler’s
preference and interest as all the solutions are Par-
eto optimal. The calibrated SWAT model simulated
well the daily streamflow of the Calapooia water-
shed for a 3-year period. The daily Nash-Sutcliffe
coefficients were 0.86 at calibration and 0.81 at val-
idation. Future studies include: (1) simultaneous
automatic calibration of water quality and quantity
parameters, and (2) link with economic models. The
application of Pareto optimization in decision and
policy-making problems related to conflicting objec-
tives of economic costs and environmental quality
will also be explored.
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